32 research outputs found

    Asymptotics of conduction velocity restitution in models of electrical excitation in the heart

    Get PDF
    We extend a non-Tikhonov asymptotic embedding, proposed earlier, for calculation of conduction velocity restitution curves in ionic models of cardiac excitability. Conduction velocity restitution is the simplest non-trivial spatially extended problem in excitable media, and in the case of cardiac tissue it is an important tool for prediction of cardiac arrhythmias and fibrillation. An idealized conduction velocity restitution curve requires solving a non-linear eigenvalue problem with periodic boundary conditions, which in the cardiac case is very stiff and calls for the use of asymptotic methods. We compare asymptotics of restitution curves in four examples, two generic excitable media models, and two ionic cardiac models. The generic models include the classical FitzHugh–Nagumo model and its variation by Barkley. They are treated with standard singular perturbation techniques. The ionic models include a simplified “caricature” of Noble (J. Physiol. Lond. 160:317–352, 1962) model and Beeler and Reuter (J. Physiol. Lond. 268:177–210, 1977) model, which lead to non-Tikhonov problems where known asymptotic results do not apply. The Caricature Noble model is considered with particular care to demonstrate the well-posedness of the corresponding boundary-value problem. The developed method for calculation of conduction velocity restitution is then applied to the Beeler–Reuter model. We discuss new mathematical features appearing in cardiac ionic models and possible applications of the developed method

    Using novel simplified models of excitation for analytic description of initiation propagation and blockage of excitation waves

    Get PDF
    We consider applications of a recently suggested new asymptotic approach to detailed ionic models of cardiac excitation. First, we describe a three-variable approximation for the excitation fronts in a detailed ionic model of human atrial kinetics. It predicts not only the speed of the fronts but also a condition for failure of propagation, i.e. gives an operational definition of absolute refractoriness. This prediction is confirmed by direct simulations of the full model. Next, we consider problem of initiation of excitation waves, using a piecewise linear caricature of the INa-driven excitation front. We identify the unstable propagating front solution (“critical front”) as the threshold event between successful initation and decay, which plays a role similar to the “critical nucleus” in the theory of initiation of waves in the FitzHugh-Nagumo system

    Excitable media in open and closed chaotic flows

    Get PDF
    We investigate the response of an excitable medium to a localized perturbation in the presence of a two-dimensional smooth chaotic flow. Two distinct types of flows are numerically considered: open and closed. For both of them three distinct regimes are found, depending on the relative strengths of the stirring and the rate of the excitable reaction. In order to clarify and understand the role of the many competing mechanisms present, simplified models of the process are introduced. They are one-dimensional baker-map models for the flow and a one-dimensional approximation for the transverse profile of the filaments.Comment: 14 pages, 16 figure

    Analytically Solvable Asymptotic Model of Atrial Excitability

    Get PDF
    We report a three-variable simplified model of excitation fronts in human atrial tissue. The model is derived by novel asymptotic techniques \new{from the biophysically realistic model of Courtemanche et al (1998) in extension of our previous similar models. An iterative analytical solution of the model is presented which is in excellent quantitative agreement with the realistic model. It opens new possibilities for analytical studies as well as for efficient numerical simulation of this and other cardiac models of similar structure

    Vortex Glass and Vortex Liquid in Oscillatory Media

    Get PDF
    We study the disordered, multi-spiral solutions of two-dimensional homogeneous oscillatory media for parameter values at which the single spiral/vortex solution is fully stable. In the framework of the complex Ginzburg-Landau (CGLE) equation, we show that these states, heretofore believed to be static, actually evolve on ultra-slow timescales. This is achieved via a reduction of the CGLE to the evolution of the sole vortex position and phase coordinates. This true defect-mediated turbulence occurs in two distinct phases, a vortex liquid characterized by normal diffusion of individual spirals, and a slowly relaxing, intermittent, ``vortex glass''.Comment: 4 pages, 2 figures, submitted to Physical Review Letter

    Scroll waves in isotropic excitable media : linear instabilities, bifurcations and restabilized states

    Full text link
    Scroll waves are three-dimensional analogs of spiral waves. The linear stability spectrum of untwisted and twisted scroll waves is computed for a two-variable reaction-diffusion model of an excitable medium. Different bands of modes are seen to be unstable in different regions of parameter space. The corresponding bifurcations and bifurcated states are characterized by performing direct numerical simulations. In addition, computations of the adjoint linear stability operator eigenmodes are also performed and serve to obtain a number of matrix elements characterizing the long-wavelength deformations of scroll waves.Comment: 30 pages 16 figures, submitted to Phys. Rev.

    A cross-diffusion model of forest boundary dynamics

    No full text
    A simple mathematical model of mono-species forest with two age classes which takes into account seed production and dispersal is presented in the paper. This reaction — diffusion type model is then reduced by means of an asymptotic procedure to a lower dimensional reaction — cross-diffusion model. The existence of standing and travelling wave front solutions corresponding to the forest boundary is shown for the later model. On the basis of the analysis, possible changes in forest boundary dynamics caused by antropogenic impacts are discussed

    Dissipation of Excitation Fronts as a Mechanism of Conduction Block in Re-entrant Waves

    No full text
    Abstract. Numerical simulations of re-entrant waves in detailed ionic models reveal a phenomenon that is impossible in traditional simplified mathematical models of FitzHugh-Nagumo type: dissipation of the ex-citation front (DEF). We have analysed the structure of three selected ionic models, identified the small parameters that appear in non-standard ways, and developed an asymptotic approach based on those. Contrary to a common belief, the fast Na current inactivation gate h is not necessar-ily much slower than the transmembrane voltage E during the upstroke of the action potential. Interplay between E and h is responsible for the DEF. A new simplified model emerges from the asymptotic analysis and considers E and h as equally fast variables. This model reproduces DEF and admits analytical study. In particular, it yields conditions for the DEF. Predictions of the model agree with the results of direct numerical simulations of spiral wave break-up in a detailed model. 1 Introduction
    corecore